Mechanism of Stapled Peptide Binding to MDM2: Possible Consequences for Peptide Design.

نویسندگان

  • Adelene Y L Sim
  • Thomas Joseph
  • David P Lane
  • Chandra Verma
چکیده

MDM2 is a negative regulator of p53. The N terminal domain of MDM2 interacts with a helical region of the transcriptional activation domain of p53. Stapled peptides have been designed to mimic this interaction, in order to inhibit p53-MDM2 binding and thereby activate the p53 response. Here, we studied how the helical segment of p53 or a stapled peptide (re)binds to MDM2 as it is systematically displaced from the MDM2 binding pocket. Depending on its sequence, presence of staple, and/or a C-terminal tail, the peptide approaches MDM2 differently and not exclusively via the crack propagation mechanism proposed previously for p53. The presence of an interacting staple appears to reduce the peptide's sensitivity to mutations of key hydrophobic residues of p53, and this could pave the way for increased diversity in sequence design of stapled peptides used in inhibiting the p53-MDM2 interaction. We further found that the presence of a hydrophobic staple in the peptide-MDM2 interface tends to trap a network of water molecules prior to binding. The release of these structured waters would then reduce the entropic penalty upon peptide binding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of a Stapled Peptide Antagonist Bound to Nutlin-Resistant Mdm2

As key negative regulator of the p53 tumour suppressor, Mdm2 is an attractive therapeutic target. Small molecules such as Nutlin have been developed to antagonise Mdm2, resulting in p53-dependent death of tumour cells. We have recently described a mutation in Mdm2 (M62A), which precludes binding of Nutlin, but not p53. This Nutlin-resistant variant is not, however, refractory to binding and inh...

متن کامل

Assessing the Efficacy of Mdm2/Mdm4-Inhibiting Stapled Peptides Using Cellular Thermal Shift Assays

Previous publications on stapled peptide inhibitors against Mdm2/Mdm4-p53 interactions have established that this new class of drugs have the potential to be easily optimised to attain high binding affinity and specificity, but the mechanisms controlling their cellular uptake and target engagement remain elusive and controversial. To aid in understanding the rules of peptide and staple design, ...

متن کامل

Structure-activity studies of Mdm2/Mdm4-binding stapled peptides comprising non-natural amino acids

As primary p53 antagonists, Mdm2 and the closely related Mdm4 are relevant cancer therapeutic targets. We have previously described a series of cell-permeable stapled peptides that bind to Mdm2 with high affinity, resulting in activation of the p53 tumour suppressor. Within this series, highest affinity was obtained by modification of an obligate tryptophan residue to the non-natural L-6-chloro...

متن کامل

Avoiding drug resistance through extended drug target interfaces: a case for stapled peptides

Cancer drugs often fail due to the emergence of clinical resistance. This can manifest through mutations in target proteins that selectively exclude drug binding whilst retaining aberrant function. A priori knowledge of resistance-inducing mutations is therefore important for both drug design and clinical surveillance. Stapled peptides represent a novel class of antagonists capable of inhibitin...

متن کامل

Design, Synthesis and Biological Evaluation of Novel Peptide-Like Analogues as Selective COX-2 Inhibitors

A new series of peptide-like derivatives containing different aromatic amino acids andpossessing pharmacophores of COX-2 inhibitors as SO2Me or N3 attached to the para positionof an end phenyl ring was synthesized for evaluation as selective cyclooxygenase-2 (COX-2)inhibitors. The synthetic reactions were based on the solid phase peptide synthesis methodusing Wang resin. One of the analogues, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 10 4  شماره 

صفحات  -

تاریخ انتشار 2014